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Chaudhry A, Shi R, Luciani DS. A pipeline for multidimensional
confocal analysis of mitochondrial morphology, function, and dynam-
ics in pancreatic �-cells. Am J Physiol Endocrinol Metab 318:
E87–E101, 2020. First published December 17, 2019; doi:10.1152/
ajpendo.00457.2019.—Live-cell imaging of mitochondrial function
and dynamics can provide vital insights into both physiology and
pathophysiology, including of metabolic diseases like type 2 diabetes.
However, without super-resolution microscopy and commercial anal-
ysis software, it is challenging to accurately extract features from
dense multilayered mitochondrial networks, such as those in insulin-
secreting pancreatic �-cells. Motivated by this, we developed a
comprehensive pipeline and associated ImageJ plugin that enables
2D/3D quantification of mitochondrial network morphology and dy-
namics in mouse �-cells and by extension other similarly challenging
cell types. The approach is based on standard confocal microscopy
and shareware, making it widely accessible. The pipeline was vali-
dated using mitochondrial photolabeling and unsupervised cluster
analysis and is capable of morphological and functional analyses on a
per-organelle basis, including in 4D (xyzt). Overall, this tool offers a
powerful framework for multiplexed analysis of mitochondrial state/
function and provides a valuable resource to accelerate mitochondrial
research in health and disease.

cell metabolism; diabetes; fluorescence microscopy; image analysis;
live-cell imaging

INTRODUCTION

Mitochondria are the main energy-producing organelles of
eukaryotic cells and are essential for a diverse range of cellular
functions, including ATP synthesis, Ca2� homeostasis, ROS
signaling, and the control of apoptotic cell death (12, 36).
Microscopy has been instrumental in unraveling intricacies of
mitochondrial biology and their diverse roles in cellular phys-
iology and pathophysiology. Electron microscopy has provided
fundamental insights into mitochondrial ultrastructure and cel-
lular distribution in health and disease but requires cell fixation
and provides only a static snapshot. In contrast, fluorescence
microscopy of live cells labeled with mitochondria-targeted
fluorescent proteins or dyes has revealed that mitochondria are
highly dynamic and motile organelles that undergo frequent
fusion and fission events (23, 51, 52). Mitochondrial dynamics
and network morphology vary in different cellular states and
are important for the function and quality control of the

organelle as well as overall cell health and adaptation to stress
(12). Healthy mitochondria are generally mobile and tubular in
shape and exist in complex networks, whereas cells undergoing
profound stress or entering apoptosis often display swollen and
fragmented mitochondria, marked by concurrent disruption of
metabolism, membrane potential, ROS levels, and Ca2� sig-
naling (4, 6, 31). Therefore, quantitative imaging-based assess-
ment of mitochondrial morphology and dynamics can provide
valuable insights into cellular physiology and pathophysiology.

In pancreatic �-cells, mitochondria play an essential role in
insulin secretion, which relies on ATP and other mitochondria-
derived metabolites to both trigger and amplify insulin granule
exocytosis in response to glucose and other nutrient stimuli (38).
Therefore, dysfunction of �-cell mitochondria results in loss of
glucose-stimulated insulin secretion (46). Perturbations to mi-
tochondria are also a common feature in insulin target tissues
with impaired insulin signaling (21, 41). Mitochondria thus
take center stage in both �-cell failure and insulin resistance
and are an area of significant focus in efforts to understand the
pathophysiology of type 2 diabetes (13, 17, 45). Mitochondria
also exist as dynamic networks in �-cells. Fusion within the
network may help protect �-cells from nutrient stress-induced
apoptosis (31), and mitochondrial fragmentation, swelling, and
dysfunction are seen in �-cells from patients with type 2
diabetes and rodent models of diabetes (3, 11, 17, 29). Normal
insulin secretion may also be influenced by �-cell mitochon-
drial dynamics (18, 22, 34), but exactly how networking of the
organelle relates to its metabolic capacity in healthy �-cells or
during conditions of moderate nutrient excess remains unclear
and warrants further investigation. Therefore, improved meth-
ods for analysis of mitochondrial morphology and dynamics in
live �-cells may help provide new insights into important
aspects of �-cell biology.

Most types of microscopy can detect the prominent morpho-
logical differences between healthy and severely stressed mi-
tochondria with relative ease. However, it is much more
challenging to accurately quantify subtle changes in mitochon-
drial dynamics or perform three-dimensional (3D) analysis of
the full mitochondrial network. This is particularly difficult in
cells with a dense mitochondrial network that spans several
layers, such as �-cells (11, 31). Although methods have been
published that integrate 3D confocal imaging and analysis of
mitochondria, these generally use commercial software pack-
ages and/or are optimized for relatively flat cell types (32, 47).
This is likely one reason why there are only few quantitative
analyses of �-cell mitochondrial dynamics and why full 3D
investigations of �-cell mitochondria are limited to a small
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number of examples using super-resolution approaches such as
4Pi-microscopy (11, 37).

To facilitate progress in the important area of mitochondrial
biology and dynamics, we present here a pipeline for quanti-
tative multidimensional analysis of mitochondria that is based
on standard confocal fluorescence microscopy and the open-
source image analysis platform ImageJ/Fiji (43, 44). In this, we
identify a superior method for accurate identification of indi-
vidual mitochondria within dense networks, and we outline a
framework for quantitative description of mitochondrial mor-
phology and network characteristics. Applying this pipeline to
clonal MIN6 �-cells and primary mouse �-cells, we quantita-
tively distinguish mitochondrial morphologies, including the
functional and morphological changes to physiological and
pathophysiological stimuli. Additionally, we discuss the pros
and cons of two-dimensional (2D) and 3D imaging approaches,
identify image-processing steps required for accurate mito-
chondrial analysis in 3D, and apply these to quantitate distinct
3D �-cell network morphologies. Finally, we extend our anal-
ysis to four-dimensional (4D) imaging by including time lapse
data, and we demonstrate the feasibility of using the pipeline to
quantitate the dynamics of the entire three-dimensional mito-
chondrial network in live cells.

MATERIALS AND METHODS

Reagents. Collagenase type XI (no. C7657), tetramethylrhodamine
ethyl ester (TMRE; no. 87917), D-glucose (no. G7528), bovine serum
albumin (BSA; no. A7030), FCCP (no. C2920), and palmitic acid (no.
P5585) were purchased from Sigma-Aldrich (St. Louis, MO). Mito-
Tracker Deep Red FM (no. M224726), MitoTracker Green FM
(MTG, no. M7514), Hoechst 33342 (no. H3570), RPMI 1640 (no.
11879), Dulbecco’s modified Eagle’s medium (DMEM; no. 11995),
fetal bovine serum (FBS; no. 10438), trypsin-EDTA (no. 25300),
penicillin-streptomycin (10,000 U/mL; no. 15140), and HBSS (no.
14185) were purchased from Life Technologies/Thermo Fisher Sci-
entific (Carlsbad, CA). Dimethyl sulfoxide (DMSO; no. BP231) was
purchased from Fisher Scientific (Waltham, MA). Minimum essential
media (MEM; no. 15-015-CV) was purchased from Corning (Corn-
ing, NY). The mitochondria-targeted YFP (mito-YFP) and mitochon-
dria-targeted photoactivatable GFP (mito-PAGFP) plasmids were
gifts from Dr. Mark Cookson (42) and Dr. Richard Youle (Addgene;
no. 23348) (23), respectively.

Cell isolation and culture. MIN6 cells were cultured at 37°C and
5% CO2 using complete DMEM supplemented with 10% FBS and 2%
penicillin-streptomycin. Culture media were replaced every 2 days,
and cells were passaged upon reaching 70–80% confluency. To
assess the effects of palmitate on mitochondrial networks, cells were
cultured for 6 h in complete DMEM supplemented with either 1.5 mM
palmitate complexed to BSA in a 6:1 ratio or BSA-only vehicle
control.

Pancreatic islets were isolated from wild-type male mice of a
mixed C57BL/6 and CD1 background using collagenase digestion and
filtration-based purification, as previously described (1). The isolated
islets were hand-picked and allowed to recover overnight before being
dispersed into single cells and seeded on 25-mm glass coverslips (30).
The islet cells were cultured in RPMI complete with 10% FBS and 2%
penicillin-streptomycin at 37°C and 5% CO2 for 4 days before
imaging. All animal procedures were approved by the University of
British Columbia Animal Care Committee.

Cell transfection and mitochondrial labeling. MIN6 cells were
seeded at a density of 2.0 � 105 on 25-mm glass coverslips (0.13- to
0.16-mm thickness, VWR no. 16004-310) and incubated for 24 h
before being transfected with mito-YFP, mito-dsRed, or mito-PAGFP
plasmids using Lipofectamine 2000 (no. 11668; Life Technologies) as

per the manufacturer’s protocol. All plasmids were expressed for �24
h before confocal microscopy.

To assess the effect of acute glucose exposure on mitochondrial
morphology and membrane potential, primary mouse islet cells were
cultured for 60 min in complete RPMI media containing 3 or 17 mM
glucose and then stained with 0.1 �g/mL Hoechst 33342, 50 nM
MTG, and 25 nM TMRE for 30 min, followed by a wash with
complete RPMI immediately before imaging.

Image acquisition by confocal microscopy. Live cells were imaged
in a Tokai Hit INUBTFP-WSKM stage-top incubator at 37°C on a
Leica SP8 Laser Scanning Confocal Microscope (Concord, ON,
Canada). For 2D, images were acquired using a �63 HC Plan
Apochromatic water immersion objective (1.2 NA). Pixel size was
adjusted using the “Optimize” function in the Leica LASX Software,
resulting in a consistent pixel width of �80 nm. The pinhole size was
1.0 Airy unit. For 3D acquisition, z-stacks were obtained using a �63
oil immersion objective (1.4 NA). Pixel size (x, y) and z-spacing were
adjusted as per the calculated optimal Nyquist sampling parameters
(44a), and pinhole size was reduced to 0.75 Airy units. The z-step size
generally varied between 170 and 220 nm. Bidirectional scanning was
enabled, and all images were acquired using at least three frame
averages. Laser power, detector filtering/gating, and gain were ad-
justed to maximize signal without saturation while also minimizing
background signal, cross-fluorescence, and photobleaching.

Time lapse 3D Imaging. Time lapse 3D (xyzt) imaging was per-
formed on MIN6 cells transfected with mito-YFP plasmid. Acquisi-
tion settings were established as above, and z-stacks were acquired
every 45 s for 30 min. The acquisition time for each stack was �30
s. At the 13 min-mark, FCCP was added to the chamber for a final
concentration of 25 �M.

Mitochondrial labeling by photoactivatable green fluorescent protein.
MIN6 cells were co-transfected with mito-PAGFP and mito-dsRed 24
h before imaging, as described above. Mito-dsRed was visualized
using a 561-nm excitation laser, with emission detected between 585
nm to 650 nm. Individual mitochondria were marked for photolabel-
ing using the “Bleach Point” function in the Leica LasX software, and
the PAGFP was activated using a 405-nm laser pulse of 150-ms
duration. The activated PAGFP was then imaged using a 488-nm
excitation laser with an emission range between 505 nm and 550 nm.
All other imaging settings were as described above.

Image deconvolution. Deconvolution of 3D and 4D stacks was per-
formed in Huygens Professional version 16.10 (SVI) using the Classic
Maximum Likelihood Estimation algorithm with a signal-to-noise
ratio of 7.0, maximum iterations of 40, and quality threshold of 0.001.
For deconvolution in ImageJ/Fiji, the “PSF Generator” plugin (24)
was used to generate a theoretical PSF based on our microscope
parameters, and deconvolution was performed with the “Deconvolution
Lab2” module utilizing the Richardson-Lucy TV algorithm with
regularization set to 0.0001 and maximum iterations of 30 (9, 40).

Image processing and thresholding. The workflow and procedures
for image processing and thresholding are summarized in Fig. 6.
Using ImageJ/Fiji, 2D images or deconvolved 3D image stacks
(operating on each slice in the stack) were preprocessed using the
following commands: 1) “subtract background” (radius � 1 �m) to
remove background noise; 2) “sigma filter plus” (radius � 0.1 �m,
2.0 sigma) to reduce noise and smooth object signal while preserving
edges; 3) “enhance local contrast” (block size � 64, slope � 2.0 for
2D and 1.25 for 3D stacks) to enhance dim areas while minimizing
noise amplification; and 4) “gamma correction” (value � 0.80 for 2D
and 0.90 for 3D) (16) to correct any remaining dim areas. To identify
mitochondria in the images, we evaluated multiple global and local
thresholding algorithms (Fig. 1 and Supplemental Figs. S1–S3; Sup-
plemental Materials for this article are available at https://doi.org/
10.6084/m9.figshare.9994088). Based on our comparisons, we elected
to use the “adaptive threshold” method (50). In the adaptive threshold
plugin, block size was set to an equivalent of 1.25 �m and the optimal
C value was empirically determined for each image set (see Supple-
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mental Fig. S2 for additional details). The thresholded images were
then postprocessed using “despeckle” and then “remove outliers”
(radius � 0.15 �m) to remove residual noise. For 3D stacks, we
additionally applied the “fill 3D holes” command from the “3D ROI
manager” plugin (33).

2D analysis of mitochondrial function, morphology, and network
characteristics. The approach for quantification of mitochondrial
characteristics is summarized in Fig. 6. For 2D analysis, the image
was first processed and thresholded (see above), and the resulting
binary image was used as the input for the “analyze particles”
command (size � 0.06 �m2-infinity, circularity � 0.00–1.00), mea-
suring for “area,” “perimeter,” and “shape descriptors.” Form Factor
(FF) was derived as the inverse of the “circularity” output value. For
network connectivity analysis, the “skeletonize 2D/3D” command
was applied to the thresholded image to produce a skeleton map, and
the “analyze skeleton” command was used to calculate the number of
branches, branch lengths, and branch junctions in the skeletonized
network.

To simultaneously measure mitochondrial polarization and mor-
phology, islet cells were co-stained with MTG and TMRE. Our
threshold method was first applied to the MTG channel, and morpho-

logical analysis was done on the identified objects. Additionally, the
analyze particles command (“add to manager” option enabled) was
used to convert the identified objects (mitochondria) into regions of
interest (ROIs). These ROIs were then superimposed onto the raw
images of the MTG and TMRE channels, and the MTG and TMRE
intensities of each individual mitochondrion were measured as the
“mean gray value” obtained via the analyze particles command. The
degree of mitochondrion polarization was then expressed as the ratio
of TMRE to MTG intensity and correlated with mitochondrial mor-
phology on a per-organelle basis.

3D analysis of mitochondrial morphology and network charac-
teristics. For 3D analysis, the image stacks were first deconvolved,
preprocessed, and thresholded as described above and summarized in
Fig. 6. Next, the “3D object counter” command (size � 0.6 �m3-
Infinity) was used to calculate the number of mitochondrial objects
and produce a labeled object map. The object map was subsequently
used as an input for the “particle analyzer 3D” command (part of the
MorphoLibJ package) (26) to calculate the volume, sphericity
(weighted by volume of the object), and corrected surface area
(“Crofton 13 directions” method) of each mitochondrial object. Net-
work connectivity analysis was performed on the skeletonized 3D

Fig. 1. General workflow and comparison of mitochondrial identification using global vs. adaptive thresholding methods. A: schematic of the general workflow
required for mitochondrial analysis by confocal microscopy. Shaded boxes represent the steps that are addressed and detailed in this paper. B: 2 representative
examples of object identification using global thresholding (“default” method) vs. adaptive thresholding (radius � 1.25 �m, C � 11) on images of MIN6-cell
mitochondria labeled with mitochondria-targeted yellow fluorescent protein (mito-YFP). The number of identified objects (mitochondria) and their total area are
indicated below the images. Scale bar, 1 �m. C: part of the mitochondrial network in a MIN6 cell co-transfected with mito-dsRed and mitochondria-targeted
photoactivatable green fluorescent protein (mito-PAGFP). Top: all mitochondria imaged in the mito-dsRed channel. Bottom left: a single mitochondrion (green)
was labeled by laser-based mito-PAGFP activation at the point indicated by the arrow. Bottom right: object identification using global vs. adaptive threshold
algorithms applied to the dsRed channel; in each image, the object that is identified as contiguous with the PAGFP-labeled mitochondrion is shown in green.
Comparison with the original image shows that the adaptive method more accurately distinguished the photo-labeled mitochondrion, whereas global thresholding
artificially merged it with adjacent mitochondria. Scale bar, 1 �m. D: quantitative comparison of the degree to which global and adaptive thresholding under-
or overestimated the PAGFP-labeled mitochondrion in 5 test images. The corresponding images and details of the estimation algorithm are shown in
Supplemental Fig. S3. 2D, 2-dimensional; 3D, 3-dimensional; 4D, 4-dimensional.
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network using the same commands as 2D analysis. For 4D (xyzt)
analysis, these 3D analysis steps were performed on each stack
obtained in the time course acquisition.

Unsupervised categorization of mitochondrial morphology using
spanning tree progression analysis of density-normalized events.
Spanning tree progression analysis of density-normalized events
(SPADE; version 3.0) (2, 39) was used to automatically classify 2D
mitochondrial images into three different categories based exclusively
on their calculated morphological and network parameters. Briefly,
mitochondrial parameter data were transformed into a flow cytometry
standard (FCS) file using FlowJo version 10 and loaded into SPADE.
A SPADE tree was created using default settings, without application
of arcsin transformation or removal of outliers. The number of desired
clusters was set equal to the total number of images in the data set.
The “auto suggest annotation” function was then used to partition the
SPADE tree into two subgroups, and the larger of these was subse-
quently auto-partitioned again, resulting in a total of three subgroups.
The data in these SPADE-identified groups were then exported as
CSV formatted files for statistical comparison.

Statistical analysis. All data were represented as means � SE. Data
were analyzed in GraphPad Prism 6.0 software (La Jolla, CA) using
Student’s t-test or one-way ANOVA followed by a Sidak multiple-
comparison test as appropriate. Statistical significance was set at a
threshold of P 	 0.05.

RESULTS

Overall workflow and general considerations. Fluorescence
confocal analysis of mitochondria in live cells involves several
general steps, each of which is important for high-quality
results (Fig. 1A). As a starting point, the cells must be cultured
on glass coverslips, or other vessels, that are appropriate for
confocal microscopy. The mitochondria should then be labeled
using carefully chosen mitochondria-targeted fluorescent pro-
teins or organic dyes (28), and the image acquisition should be
optimized and carried out in a manner that provides sufficiently
high resolution and image quality for accurate analysis. Be-
cause these factors and general steps can vary between specific
experiments and microscope systems, an extensive discussion
falls beyond the scope of this paper. The imaging parameters
and conditions we have used are detailed in Materials and
Methods. Our focus in the following will be on the post-
acquisition steps that are critical for accurate morphological
analysis of mitochondria in the confocal images.

Image acquisition and analysis can be done in 2D or 3D, and
by further extending this to include time lapse capture, impor-
tant information can be extracted about mitochondrial dynam-
ics. The choice between these imaging modes may be influ-
enced by several considerations, including the type and thick-
ness of the cell, the specific parameters to be quantified, and the
biological questions being asked. For instance, we will discuss
later how some 2D analyses of relatively thick cells, such as
pancreatic �-cells, can be associated with inaccuracies that
may be mitigated by a full 3D analysis of the mitochondrial
network. In all cases, accurate quantification of mitochondrial
features involves image-processing steps and identification of
the mitochondrial objects in the image. Morphological features
can then be extracted using appropriate 2D or 3D shape
descriptors, whereas mitochondrial networking can be assessed
through skeletonization analysis. In this latter process, the
binarized mitochondria are converted into topological skele-
tons (the thinnest form that is equidistant to its edges), and the
branches of the skeleton are analyzed. In the following, we

describe each of these postacquisition steps and identify a
number of “best approaches” to build a pipeline for accurate
multidimensional analysis of mitochondria that we also imple-
ment and make available in a comprehensive Mitochondria
Analyzer plugin for ImageJ/Fiji (7).

Image thresholding and identification of mitochondria. Be-
fore accurate morphological analysis of fluorescently-labeled
mitochondria can be done, it is essential that 1) the mitochon-
drial population is correctly identified in the images and 2) the
individual mitochondrial units can be distinguished within the
dense mitochondrial network. For this critical step, a thresh-
olding process based on analysis of the intensity histogram is
used to distinguish pixels with “true” fluorescent signal from
background signal. This process also groups any identified
positive pixels that are connected into discrete objects (i.e.,
mitochondria) that can be analyzed further. Thresholding ap-
proaches can be broadly categorized as either “global” or
“local,” which identify positive pixels based on the histogram
of the entire image or on dynamic analyses of image subre-
gions, respectively (16, 32). Global thresholding tends to be the
most commonly used approach, but this may reflect its relative
ease of use rather than accuracy.

To identify the most suitable thresholding strategy for mi-
tochondrial identification, we compared the performance of the
global and local threshold methods available for ImageJ/Fiji on
images of primary islet cells stained with MitoTracker dye.
This was judged on the ability to preserve mitochondrial
structural detail while minimizing capture of background sig-
nal. For optimal results, all images were pre- and postprocessed
to reduce noise (see MATERIALS AND METHODS). Among the
global-based algorithms in the ImageJ/Fiji “auto threshold”
command, we qualitatively estimated that the default method
performs similar to, or in several cases better than, the other
global algorithms (Supplemental Fig. S1).

The local thresholding methods we tested included the
mean, median, and mid-gray algorithms (part of the “auto local
threshold” command), as well as the weighted mean method
(also called adaptive threshold), which is available through a
separate plugin (50) (Supplemental Fig. S2). These local meth-
ods compute a threshold for each pixel in the image and require
the definition of two parameters: a block size and a C value.
The block size specifies the size of the region around each pixel
for which the histogram is analyzed and should be chosen
based on the size of the objects of interest for the best results
(50). The C value provides an offset to the threshold and helps
strike a balance between minimizing noise detection and in-
correctly splitting objects into smaller pieces (25, 50). Using
the adaptive threshold method for optimization, we found that
the ideal C value depended on the image’s signal-to-noise
contrast and needed to be empirically determined. Therefore,
for each set of images that has been acquired and processed in
a similar manner, we recommend that various combinations of
block size and C values should be tested on a representative
image to determine the best combination. The optimized pa-
rameters can then be used to threshold all images in the group
similarly (see Supplemental Fig. S2 for details). Among the
local threshold approaches, our assessment was that the mean
and adaptive threshold methods best captured mitochondrial
structure and that the adaptive threshold further tended to
identify less noise (Supplemental Fig. S2B).
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A side-by-side comparison indicated that local (adaptive)
thresholding resolves mitochondria better than global thresh-
olding, which appears to capture more out-of-focus signal
and/or noise, and therefore, it erroneously merges adjacent
objects (Fig. 1, B and C). For a more stringent and quantitative
evaluation, we used mitochondria-targeted photoactivatable
GFP (mito-PAGFP) to selectively photo label single mitochon-
dria and identify truly contiguous organelles within dense
regions of the network (23, 52). As exemplified in Fig. 1C and
quantified in Fig. 1D (see also Supplemental Fig. S3), adaptive
thresholding was indeed better at delineating photo-labeled
mitochondria and distinguishing closely adjacent parts of the
network that are physically separate. In contrast, the global
threshold algorithm consistently overestimated the mitochon-
drial size. Taken together, these comparisons established that
using adaptive thresholding, with empirically optimized pa-
rameter values, is a superior approach for accurate identifica-
tion of fluorescently labeled �-cell mitochondria.

Two-dimensional analysis of mitochondrial morphology and
network connectivity. After careful image thresholding, the
next step is to quantify the morphological features of the
identified mitochondrial objects. Therefore, we identified a
comprehensive set of parameters to capture and mathemati-
cally describe key aspects of the mitochondrial morphology.
For 2D analysis, we characterize mitochondrial size by area
and perimeter, whereas mitochondrial shape is defined by form
factor (FF) and aspect ratio (AR). We evaluate the overall
connectivity and morphological complexity of the mitochon-
drial network based on the skeletonized network and quantify
this by the number of branches and the number of branch
junctions as well as total (accumulated) length of branches in
the skeleton. Supplemental Figure S4 summarizes the various
parameters and indicates how they change with various mor-
phologies.

To evaluate the ability of this approach to measure and
distinguish mitochondrial morphologies, we transfected MIN6
cells with mito-YFP and generated an image set consisting of
2D slices from 84 cells. We then divided the cells into three
different categories based on visual inspection of their mito-
chondria: 1) a “fragmented” group, characterized by small
round mitochondria and little branching; 2) a “filamentous”
group, with highly connected networks of long/filamentous
mitochondria; and 3) an “intermediate” group of cells contain-
ing a mixture of punctate and longer tubular mitochondria. As
shown in Fig. 2, analysis of the 2D images resulted in quan-
titative morphological and networking parameters that differed
significantly between the three groups. Of note is that a more
in-depth comparison of the two shape descriptors revealed that
FF required smaller sample sizes than AR to detect differences
between the three morphological subtypes and seemed partic-
ularly well-suited for distinguishing between cells with fila-
mentous and intermediate mitochondrial morphologies (Sup-
plemental Fig. S5). This is likely because AR only measures
elongation, whereas FF incorporates the perimeter, and there-
fore it is more sensitive to curvature and the irregular shapes of
filamentous mitochondria (Supplemental Fig. S5B). Collec-
tively, these results demonstrate that our combined approach
for image processing, thresholding, and analysis enables quan-
titative identification and comparison of mitochondrial mor-
phological subtypes.

Validation of morphometric quantifications and classifica-
tions by unsupervised clustering. Next, we further tested our
pipeline by using spanning tree progression analysis of density-
normalized events (SPADE) (2, 39) to obtain an unbiased
clustering of our test images. The morphological parameters
that had been calculated from our image set of 84 mito-YFP-
expressing MIN6 cells (shown in Fig. 2) were loaded into
SPADE, which used these to generate a population tree in
which each node represents a cell (Fig. 3A). This SPADE tree
was then subdivided into three cell populations based on
automatic clustering of their mitochondrial features (Fig. 3A;
see MATERIALS AND METHODS for details). When images from
each of the three SPADE-identified groups were subsequently
examined, the mitochondria in each group were noticeably
dissimilar in appearance (Fig. 3B), and comparative analysis
revealed that there were significant differences in all the
morphological descriptors (Fig. 3, C and D). The morphomet-
ric data indicated that SPADE subgroups 1, 2, and 3 corre-
sponded to cells with filamentous, intermediate, and frag-
mented mitochondria, respectively. This was confirmed by an
88% match between the unsupervised SPADE clustering and
our manual grouping of the cells. Together, these results
provide an unbiased validation of the applicability and robust-
ness of our 2D pipeline for analysis of mitochondrial network
structure and complexity.

Limitations of 2D mitochondrial analysis. Our 2D analyses
reliably measure mitochondrial morphology in an optical
cross-section and can provide valuable information regarding
the state of the organelle. However, when cells are relatively
thick and tend to have a mitochondrial network that spans
several layers, this approach has its challenges and limitations.
It is difficult to know whether a given plane in a cell is truly
representative, and as illustrated by the green objects in Fig.
4A, the 2D appearance of a mitochondrion will also depend on
its orientation relative to the optical cross-section. Moreover, a
2D image is unlikely to reveal the actual interconnectedness of
the mitochondrial network. When a mitochondrion spans mul-
tiple planes and intersects the focal cross-section at several
points, it can result in a notable misrepresentation of the
morphology, as illustrated by the blue schematic object in Fig.
4A. That this also occurs in situ is demonstrated in the side-
by-side 2D and 3D visualization of a photo-labeled mitochon-
drion in Fig. 4, B and C. When viewed in 2D, the localized
photoactivation of mito-PAGFP seemed to label four small and
distinct mitochondria (Fig. 4B; shown in green), but a full 3D
reconstruction revealed that it was in fact one continuous
organelle (Fig. 4C), consistent with diffusion-mediated distri-
bution of GFP within the lumen.

Another inherent limitation of 2D analysis is that it does not
allow direct quantitation of the total mitochondrial mass.
Cross-sectional area has been used to estimate mass in rela-
tively flat cells like neurons and fibroblasts, where mitochon-
dria are confined to a limited number of planes (5, 32).
However, this approximation is less appropriate for thicker
cells, including �-cells. A common alternative, intended to
capture as much of the mitochondrial network as possible,
involves acquiring a stack of z-slices and projecting these into
a single plane for faster and simpler analysis (31, 47). Such
projections contain information from the whole network, but in
voluminous cells this will erroneously merge overlapping mi-
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tochondria and produce indiscriminate clusters in the resulting
image.

Because the importance of mitochondrial dynamics and its
implication for cellular health and disease has become more
apparent, there is also an increasing need for more comprehen-
sive characterization of the organelle. Accordingly, there will
inevitably be instances where the caveats of 2D analysis we

have discussed above become restricting. Therefore, to enable
more precise quantification of mitochondrial volume and net-
work structure, we expanded our pipeline to include a complete
3D representation and analysis.

Three-dimensional imaging and analysis of mitochondria.
Full 3D reconstruction of mitochondria can be accomplished
by taking a stack of serial slices throughout the volume of the

Fig. 2. Quantitative comparison of mitochon-
drial morphology and network connectivity
in 2D (2-dimensional). Based on visual in-
spection of their mitochondria, 84 images
of mitochondria-targeted yellow fluorescent
protein (mito-YFP)-expressing MIN6 cells
were categorized into 3 morphological groups:
fragmented (20 cells), intermediate (46 cells),
or filamentous (18 cells). A and B: examples
of the YFP-labeled mitochondria in represen-
tative cells from each group (A) and the
objects identified by application of adaptive
thresholding to the images (B). C: 2D mor-
phological analysis of all cells in each of the
categories. D: skeletonization of the mito-
chondrial objects identified in B. E: quantita-
tive analysis and comparison of mitochon-
drial network connectivity performed on all
cells in each morphological category. Data
are represented by means � SE. One-way
ANOVA with Sidak post hoc test was used to
compare the groups; **P 	 0.01; ***P 	
0.001; ****P 	 0.0001. AR, aspect ratio;
AU, arbitrary units; FF, form factor.
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cell and integrating them with software such as ImageJ/Fiji.
However, there are technical challenges and constraints spe-
cifically associated with 3D imaging. Foremost of these is that
the maximum axial resolution (z-axis) of confocal microscopes
is �500–800 nm, which is almost three times worse than the
lateral (xy-plane) (8, 14). Because mitochondria are often 	1
�m in diameter, they approach this limit (11). This can lead to
a distorted appearance of imaged mitochondria, particularly in
the z-axis, where it causes artificial stretching and blending of
signal from objects in close vertical proximity to each other. In
the following section, we discuss steps that can be taken to
mitigate some of these caveats and improve 3D results.

Image acquisition and processing requirements for accurate
3D analysis. An important first consideration when acquiring a
stack of images for 3D analysis is the z-distance between
adjacent imaging planes. If the spacing is too large, the final
reconstruction will be inaccurate. On the other hand, oversam-
pling will take unnecessary time, increase phototoxicity, and
require additional resources for image storage and analysis.
Therefore, the distance between serial sections should be set
according to the optimal Nyquist sampling rate, which pro-

vides the ideal density of information to permit accurate digital
reconstruction of an object (35). The Nyquist distance can be
calculated using online resources (44a).

Even under optimal conditions, a confocal image will be
affected by inherent diffraction-induced distortion of the im-
aged object. This distortion can be represented by a point-
spread function (PSF) and then computationally corrected by
using deconvolution algorithms. By removing the effects of the
PSF, the deconvolution process provides a more correct rep-
resentation of the underlying object and also helps eliminate
out-of-focus light and/or noise in the image (8). In Fig. 4, we
illustrate this and use the free DeconvolutionLab2 module for
ImageJ/Fiji and the commercial deconvolution software Huy-
gens Professional (SVI) to test the effect of deconvolution on
3D stacks of mitochondria (see MATERIALS AND METHODS for
details). As seen in Fig. 4D, mitochondria in the raw image
stack have approximately two to three times greater diameter in
the xz-view than in the xy-view, which illustrates the z-stretch-
ing. The deconvolution algorithms help reduce this distortion,
remove noise, and improve the contrast and separation of
adjacent objects (Fig. 4D and Supplemental Fig. S6). In gen-

Fig. 3. Unsupervised categorization of mito-
chondrial features using spanning tree pro-
gression analysis of density-normalized
events (SPADE). A: a SPADE tree was gen-
erated based on the same set of 84 images
used in Fig. 2 and then automatically subdi-
vided into 3 groups; group 1 contains 19
nodes/cells, group 2 contains 47 nodes/cells,
and group 3 contains 18 nodes/cells. B: rep-
resentative images extracted from each of the
3 SPADE-generated groups. C and D: com-
parison of the mitochondrial morphology and
network parameters between the 3 SPADE-
identified cell groups. All data are represented
by means � SE. *P 	 0.05, **P 	 0.01,
***P 	 0.001, and ****P 	 0.0001 as deter-
mined by 1-way ANOVA with Sidak post hoc
test; n � 84 images.
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Fig. 4. Limitations of 2-dimensional (2D) morphometric analysis and the importance of deconvolution for the quality and accuracy of 3-dimensional (3D)
mitochondrial analysis. A: schematic illustrating the effect of object orientation in 3D space on the image capture in a horizontal 2D slice. The apparent 2D
morphology of the same tubular object (shown in green) will depend on its orientation relative to the confocal plane. If a curved object (shown in blue) intersects
the confocal plane at several locations, it will erroneously be identified as separate objects. B: MIN6 cells were co-transfected with mito-dsRed and
mitochondria-targeted photoactivatable green fluorescent protein (mito-PAGFP) and photoactivation induced at the point indicated by an arrowhead. Scale bars, 3
�m. Top: 2D image of Mito-dsRed and mito-PAGFP channels after photoactivation. Bottom: objects identified after preprocessing and thresholding of the 2D
cross-section. C: full 3D imaging and reconstruction (rendered using Huygens Professional software) of the same mitochondrial population shown in B. Note
that the photo-labeled mitochondrion in 2D appears as a series of separate mitochondria, whereas 3D visualization correctly identifies it as 1 contiguous organelle.
D: a full z-stack was acquired from a mitochondria-targeted yellow fluorescent protein (mito-YFP)-expressing MIN6 cell that was 11 �m in height. Top:
maximum projection views of the z-stack before and after deconvolution. The confocal image stack was deconvolved using either ImageJ DeconvolutionLab
(Richardson-Lucy algorithm) or Huygens Professional (Classical Maximum Likelihood Estimation) software for 40 iterations. Dotted line indicates the position
of the axial section shown below. Bottom: axial sections (xz-plane) of the raw and deconvolved image stacks. The reduction in axial stretching of objects can
be seen in the deconvolved stacks, with the best improvement achieved using the Huygens algorithm (see additional details in Supplemental Fig. S6 and
Supplemental Table S1). E: 3D renderings of the z-stack before and after deconvolution with ImageJ or Huygens Professional. All 3D visualizations were
generated using the Huygens 3D object renderer, with a unique color assigned to separate objects.
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eral, we found that the Huygens deconvolution package re-
duced axial stretching more effectively than the ImageJ De-
convolutionLab2 module. By and large, however, both decon-
volution algorithms significantly increased the quality of 3D
mitochondrial network reconstructions compared with the raw
confocal images (Fig. 4E). Deconvolution also affected subse-
quent 3D quantifications of mitochondrial number, shape, and
size in a way that indicated superior separation of individual
mitochondria within the full population (Supplemental Table
S1; see discussion of the 3D analysis parameters below). In
summary, these results demonstrate that deconvolution of the
raw confocal image stacks helps mitigate limitations of 3D
imaging and is a necessary step for accurate reconstruction and
quantification of the full mitochondrial network.

Three-dimensional quantification of mitochondrial morphol-
ogy and network connectivity. When a high-quality represen-
tation of the full mitochondrial network has been generated,
ImageJ/Fiji can be used to extract information about the 3D
morphology and connectivity by the same general principles
previously discussed for 2D. Mitochondrial size in 3D is
represented by volume and surface area, whereas shape is
characterized by the sphericity of the mitochondrial object. The
complexity of the 3D network is quantified by the same branch
parameters used for 2D (see Supplemental Fig. S4 for a
summary). Analogous to our 2D analyses, we evaluated our 3D
approach by generating a set of image stacks from mito-YFP-
expressing MIN6 cells and grouping these as fragmented,
filamentous, or intermediate based on the visual appearance of
the reconstructed mitochondrial networks (Fig. 5A). Quantifi-
cation using ImageJ/Fiji (see Fig. 6 and MATERIALS AND METHODS

for details) showed that the number of mitochondria per cell
and their average sphericity progressively increased, whereas
the average mitochondrial volume decreased, as we moved
from filamentous to intermediate to fragmented morphologies
(Fig. 5B). In contrast, the total mitochondrial volume of each
cell remained constant, highlighting that significant morpho-
logical heterogeneity can occur independent of changes to
mitochondrial mass (Fig. 5B). In the skeletonized network, the
number of branches and branch junctions progressively de-
creased, illustrating that mitochondrial fragmentation, not sur-
prisingly, is associated with a reduction in overall network
complexity (Fig. 5, C and D). Together, the above results and
discussions demonstrate how standard confocal imaging can be
combined with ImageJ/Fiji-based processing and analysis to
quantify volume, morphology, and connectivity of the entire
mitochondrial network in live pancreatic �-cells. To our
knowledge, 3D investigation of �-cell mitochondria at this
level has previously been done only on fixed INS-1 cells using
specialized high-resolution 4Pi imaging techniques (11, 37) or
super-resolution microscopy (10).

Pipeline summary. Figure 6 illustrates the overall pipeline
for 2D and 3D mitochondrial analysis. In summary, 2D image
slices or 3D image stacks are first acquired, with the latter
deconvolved before analysis. In ImageJ/Fiji, deconvolution of
3D stacks is done using the DeconvolutionLab2 module (40),
and if desired, the 3D stack can be visualized using the “3D
viewer” or “volume viewer” functions. Alternatively, 3D de-
convolution and visualization can be done using commercial
software, such as Huygens, if available to the user (Fig. 4). For
analysis, all images are then preprocessed using the commands
subtract background, sigma filter plus, enhance local contrast,

and gamma correction. We then empirically test a range of
block sizes and C values for the adaptive threshold command
to establish the optimal values and use these as input when
applying the threshold algorithm. The resulting binarized im-
ages are postprocessed using the despeckle, remove outliers,
and fill 3D holes commands. At this stage, we recommend
comparing the final thresholded image to the original images as
a quality control check of the object identification and segmen-
tation. The identified mitochondrial objects are then analyzed
in 2D using analyze particles command, which provides mito-
chondrial count, area, perimeter, form factor (FF), and aspect
ratio (AR). For 3D analysis, we use the 3D object counter and
“3D particle analyzer” (from the MorphoLibJ package) com-
mands to quantify count, volume, surface area, and sphericity.
The thresholded objects are then converted into skeletons using
“skeletonize (2D/3D)”, and we apply the analyze skeleton
command to obtain the number of skeletons, number of
branches, length of branches, and number of branch junctions
in the 2D or 3D network. Additional details and parameter
values can be found in MATERIALS AND METHODS.

Quantifying physiological and pathophysiological changes
to mitochondrial morphology and networking. Having estab-
lished and validated the mitochondrial analysis pipeline, we
next tested its ability to characterize mitochondrial changes
under relevant physiological and pathophysiological condi-
tions. As a test of acute functional responses, primary mouse
islet cells were cultured in either basal (3 mM) or stimulatory
(17 mM) glucose for 1 h and co-stained with MitoTracker
green (MTG) and the mitochondrial membrane potential-sen-
sitive dye TMRE (Fig. 7A). The MTG fluorescence is insen-
sitive to changes in mitochondrial polarization and served as
the signal for mitochondrial detection and morphological char-
acterization (54). The TMRE intensity provided a simultaneous
readout of the activity of the individual mitochondrial units,
and as expected, stimulatory glucose increases the TMRE/
MTG intensity ratio (Fig. 7B). By visual inspection there were
no obvious differences in mitochondrial morphology between
the cells in low and high glucose (Fig. 7A), but quantitative
analysis revealed a number of significant effects (Fig. 7, C and
D). Despite no change to total mitochondrial area, glucose
stimulation increased the number of mitochondria, reduced
their average size (area and perimeter), and made them more
round (decreased form factor), all of which suggests increased
mitochondrial fission (Fig. 7C). This was further supported by
skeletonization analysis, which showed that stimulatory glu-
cose caused an overall reduction in mitochondrial network
connectivity (decreased branch parameters) (Fig. 7D). This
experiment agrees with previous reports linking Drp1-depen-
dent mitochondrial fission to glucose-stimulated insulin secre-
tion (18, 22) and demonstrates that our analysis pipeline is
sensitive enough to allow quantitative detection of subtle
physiological changes to mitochondrial morphology and net-
working.

As an example of a full 3D application, we quantified the
mitochondrial changes in palmitate-treated MIN6 cells, an in
vitro model of the �-cell lipotoxicity associated with obesity
and type 2 diabetes. As expected from previous 2D analyses
(31), we observed a fragmentation of the mitochondrial net-
work following treatment with a high concentration of palmi-
tate (Supplemental Fig. S7). This pathophysiological stress
response did not affect total mitochondrial volume but was
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Fig. 5. Quantitative comparison of mitochondrial morphology and network connectivity in 3D (3-dimensional). Image stacks of mitochondria-targeted yellow
fluorescent protein (mito-YFP)-expressing MIN6 cells were visualized in 3D and their mitochondria manually categorized as fragmented, intermediate, or
filamentous. A: 3D renderings (produced using Huygens Professional) of representative mito-YFP-expressing MIN6 cells from each of the morphological
categories. B: quantitative 3D analysis and comparison of mitochondrial morphology between cells in each category. C: 3D renderings of the skeletonized
mitochondrial network of the cells depicted in A. D: quantitative 3D analysis and comparison of mitochondrial network connectivity between cells in each
category. All data are represented by means � SE. **P 	 0.01, ***P 	 0.001, and ****P 	 0.0001, as determined by 1-way ANOVA with Sidak post hoc test;
n � 10 cells in each category.
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clearly reflected in all parameters describing the 3D shape and
size of individual mitochondrial units (Supplemental Fig. S7).
Comparing the 2D morphological changes associated with 1 h
of glucose stimulation and 6 h of palmitate exposure, it is
interesting to note that palmitate treatment reduced AR by 26%
and FF by 29%, whereas glucose stimulation decreased AR
and FF by only 4 and 12%, respectively. This suggests that
physiological fission generates daughter mitochondria that
largely retain their shape, in contrast to the more pronounced
stress-induced fragmentation, which also causes a striking
rounding of the smaller organelles.

Four-dimensional analysis of mitochondrial dynamics. At
any given time, the overall structure of a mitochondrial net-
work reflects the net balance of fusion and fission between
individual mitochondria. These are dynamic, energy-depen-
dent processes that involve mitochondrial movement and co-
ordinated actions of proteins that mediate fusion of the outer
and inner membranes or constriction and splitting of the
organelle (36). Based on static image analysis alone, it can be

difficult to know the reason for a change in morphometry. For
instance, a more connected and elongated network can be the
result of an increase in fusion events, a decrease in fission
activity, or a combination of both. Therefore, to further under-
stand the underlying changes, it can be valuable to monitor
mitochondrial movement, morphological changes, and organ-
elle interactions in real time. In practical terms, this requires
that image acquisition can be repeated at sufficiently frequent
intervals and that the analysis is extended to the time domain.
Previous studies have applied these principles to 2D images to
provide important insights regarding mitochondrial dynamics
and turnover in pancreatic �-cells (31, 51).

Here, we tested the feasibility of recording and quantifying
the time-dependent dynamics of the full 3D mitochondrial
network (i.e., an extension to 4D analysis). For this, we
expressed mito-YFP in MIN6 cells and imaged these in a stage
top incubator on the confocal microscope. 3D time lapse data
were generated by acquiring z-stacks of the cells at regular time
intervals (every 45 s) for a period of 30 min. At the 13-min

Fig. 6. Summary of pipeline for 2-dimensional (2D) and 3-dimensional (3D) mitochondrial analysis in ImageJ/Fiji. For illustration, an image stack was acquired
from a MIN6 cell expressing mitochondria-targeted yellow fluorescent protein (mito-YFP); a representative slice is shown as the 2D input and the entire stack
(after deconvolution) as the 3D input. 3D stacks are represented as maximum projections here. Scale bars, 5 �m. See MATERIALS AND METHODS and RESULTS for
additional details and parameter values. AR, aspect ratio; FF, form factor.
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mark, we added a high concentration of the mitochondrial
uncoupling agent FCCP, with the purpose of inducing a rela-
tively rapid change in mitochondrial dynamics and architec-
ture. Quantitative analyses showed that the distribution of
mitochondrial morphologies did not change before the addition
of FCCP, indicating that there was no photodamage to the cell
(data not shown). As seen in Fig. 8 and Supplemental Video
S1, the FCCP triggered a rapid and dramatic loss of mitochon-
drial connectivity along with an increase in the number of
organelles. Interestingly, there was also a transient decrease in
both average and total mitochondrial volume, which indicates
an initial contraction and shrinking of the mitochondrial frag-
ments, followed by significant swelling, a known response to
stress and osmotic shock (48). The abrupt and severe deterio-
ration of the mitochondrial network likely reflects the induction
of apoptosis due to profound damage from high levels of
FCCP.

With this proof-of-principle experiment, we have estab-
lished the feasibility of analyzing the temporal dynamics of a
full mitochondrial network using standard confocal micros-
copy. A powerful next step could be to combine this 4D
approach with other tools such as photo labeling and tracking
of individual organelles to generate even more complete and
in-depth knowledge of the events that shape the mitochondrial
network in health and disease.

DISCUSSION

Most aspects of cellular function and survival are linked to
mitochondrial physiology or signals originating from the or-
ganelle, and in these contexts the importance of mitochondrial
morphology and dynamics has become evident (12, 36). The
integrity of the organelle itself, and by extension the metabolic
health of the cell, depends on the capacity for mitochondrial
adaptation to stress and on selective turnover of damaged parts
of the network by mitophagy (51). These processes rely on
mitochondrial fusion and fission dynamics, which require sen-
sitive live-cell imaging approaches to study (20). Our current
understanding of mitochondrial dynamics in pancreatic �-cells
has also been based largely on such imaging approaches (31,
51). However, it is challenging to accurately quantify �-cell
mitochondrial morphometry and dynamics by fluorescence
microscopy, and many important questions remain unan-
swered.

In the previous sections, we established a comprehensive set
of methods for quantitative image analysis and “morphofunc-
tional” characterization of mitochondria based on standard
confocal microscopy and the ImageJ/Fiji shareware. The ro-
bustness of these approaches was validated in several ways,
including by unsupervised data clustering. We demonstrated
the applicability of the resulting pipeline for cells with dense

Fig. 7. Two-dimensional (2D) analysis shows that glucose stimulation is associated with mitochondrial fission in pancreatic islet cells. Dispersed mouse islet cells
were treated in either 3 (3G) or 17 mM glucose (17G) for 60 min and then labeled with Hoechst 33342, MitoTracker Green FM (MTG), and tetramethylrhodamine
(TMRE) before 2D imaging. A: representative images of an MTG- and TMRE-stained islet cell in 3G and 17G. B: TMRE/MTG ratio (normalized to average
3G), indicating the degree of mitochondrial hyperpolarization. Mitochondrial morphology and polarization were quantified using our 2D analysis pipeline in
Fiji/ImageJ (see MATERIALS AND METHODS). C and D: comparison of mitochondrial morphometry (C) and mitochondrial network connectivity (D) demonstrates
significant differences between cells acutely treated with low and stimulatory glucose. All data are represented by means � SE. **P 	 0.01, ***P 	 0.001, and
****P 	 0.0001 as determined by Student’s t-test; n � 49 cells in each glucose treatment from 4 mice.
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multilayered mitochondria by conducting detailed 2D and 3D
morphometric analyses of �-cells and further extended these to
4D time lapse imaging with the accuracy needed for quantita-
tive assessment of network dynamics. To help researchers
implement these methods, we have also built our analysis
pipeline into a plugin for ImageJ/Fiji called Mitochondria
Analyzer. The plugin is publicly available (7) and includes a
graphical user interface to facilitate preprocessing, parameter
optimization, image thresholding, and automated morphofunc-
tional analysis of mitochondrial images or image stacks ac-
cording to the workflow we have presented (Fig. 6).

When testing the pipeline, we demonstrated the capability
for multiparameter characterization by performing 2D analyses
of islet cells co-stained with MTG and TMRE for simultaneous
recordings of changes to mitochondrial morphology and mem-
brane potential. However, the pipeline can in principle be
applied to any number of mitochondrial parameters, provided
they can be jointly imaged and then quantified using shape- and
intensity-based descriptors. Therefore, we predict that the same
type of analysis using a stable mitochondrial label combined

with one or more spectrally distinct fluorescent biosensors,
e.g., for mitochondrial redox state, matrix Ca2�, or pH, could
provide valuable insights into physiological and pathophysio-
logical structure-function relationships in mitochondria. Im-
portantly, the analysis pipeline treats all identified objects
separately and can, therefore, extract the morphological and
functional descriptors on a per-mitochondria basis. In the
previous sections, we presented our results based on the cel-
lular averages, but the same data sets contain the descriptors
associated with thousands of individual mitochondria and can
be mined for a wealth of information about morphometry-
physiology correlations and heterogeneity at the organelle level
(27, 55). It should also be emphasized that the practical
considerations and best-practices we have discussed and incor-
porated into our pipeline are not restricted to �-cell analyses
but can also be applied to other cell types.

Finally, the pipeline can in principle also be used to inves-
tigate fluorescently labeled organelles other than mitochondria,
provided that appropriate thresholding/analysis parameter ad-
justments can be made. The importance of inter-organelle

Fig. 8. Time lapse 3-dimensional (3D) imaging (xyzt) and analysis of mitochondrial dynamics. Mitochondria-targeted yellow fluorescent protein (mito-YFP)-
expressing MIN6 cells were imaged in a stage top incubator, with 1 full image stack acquired every 45 s. A: 3D renderings (produced in Huygens Professional)
of the mitochondrial network in a single cell at different time points. A high concentration FCCP (25 �M) was added to the incubation media around the 13-min
mark. B: quantitative analysis of the time-dependent effects of FCCP on mitochondrial number, sphericity, total and mean volume, and network characteristics
in the cell.
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contacts for cellular function and health are becoming clear, as
is the highly complex and dynamic nature of the “organelle
interactome” (15, 49, 53). Within the technical boundaries
associated with standard confocal microscopy, the analysis
approaches we have described here can help most research
laboratories achieve the level of accuracy needed to explore
internal mitochondrial network interactions, and likely also the
mitochondrial relationship with other organelles, as we work to
clarify the subcellular basis of diabetes and other diseases.
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